精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a1 , a3 , a7成等比数列.
(1)求数列{an}的通项公式;
(2)若an≠a1时,数列{bn}满足bn=2 ,求数列{bn}的前n项和Tn

【答案】
(1)解:∵等差数列{an}的前n项和为Sn,且S3=9,a1,a3,a7成等比数列,

,解得

时,an=3;

时,an=2+(n﹣1)=n+1


(2)解:∵an≠a1,∴an=n+1,∴bn=2 =2n+1

=2,

∴{bn}是以4为首项,以2为公比的等比数列,

∴Tn= = =2n+2﹣4


【解析】(1)由等差数列前n项和公式、通项公式及等比数列性质,列出方程组,求出首项与公差,由此能求出数列{an}的通项公式.(2)由an≠a1 , 各bn=2 =2n+1 , 由此能求出数列{bn}的前n项和Tn
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2﹣2x+2﹣a2)(a>0),g(x)=x2+6x+c(c∈R).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣4x﹣2,求a的值;
(2)求函数f(x)的单调区间;
(3)当a=1时,对x1∈[﹣2,2],x2∈[﹣2,2],使f(x1)<g(x2)成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;

(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.

[140,150]

合计

参加培训

5

8

未参加培训

合计

4

附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别是向量,且.

(1)求角B的值;

(2)若,且,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数.

(1)求函数的单调递增区间;

(2)在中,边分别是角的对边,角为锐角,若的面积为,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣ax+a(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,证明:当0<x1<x2时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3,4五个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, = == 分别在上, ,现将四边形沿折起,使.

(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;

(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.

查看答案和解析>>

同步练习册答案