精英家教网 > 高中数学 > 题目详情
已知数列{an}、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(Ⅰ)求数列{bn}的通项公式;
( II)求数列{
2nbn
}
的前n项和Dn
( III)若数列{bn}的前n项和为Sn,设 Tn=S2n-Sn,求证:Tn+1>Tn
分析:(Ⅰ)由bn=an-1得an=bn+1,代入an-1=an(an+1-1),得bn=(bn+1)bn+1,整理得bn-bn+1=bnbn+1,由此能求出数列{bn}的通项公式.
(II)由
2n
bn
=n•2n
,知Dn=2+2•22+3•23+…+n•2n,由此利用错位相减法能求出Dn
(III)由Sn=1+
1
2
+
1
3
+
+
1
n
,知Tn=S2n-Sn=(1+
1
2
+
1
3
+
+
1
n
+
1
n+1
+
+
1
2n
)-(1+
1
2
+
1
3
+
+
1
n
)=
1
n+1
+
1
n+2
+
+
1
2n
.由此能够证明Tn+1>Tn
解答:解:(Ⅰ)由bn=an-1得 an=bn+1代入 an-1=an(an+1-1),
得 bn=(bn+1)bn+1,整理得 bn-bn+1=bnbn+1.(2分)
∵bn≠0,否则 an=1,与 a1=2矛盾.
从而得 
1
bn+1
-
1
bn
=1

∵b1=a1-1=1
∴数列 {
1
bn
}
是首项为1,公差为1的等差数列.(4分)
1
bn
=n
,即bn=
1
n
.(6分)
(II)
2n
bn
=n•2n

Dn=2+2•22+3•23+…+n•2n(1)
2Dn=1•22+2•23+3•24+…+n•2n+1(2)(6分)
-Dn=2+22+23+…+2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1

Dn=(n-1)2n+1+2.(8分)
(III)∵Sn=1+
1
2
+
1
3
+
+
1
n

∴Tn=S2n-Sn=(1+
1
2
+
1
3
+
+
1
n
+
1
n+1
+
+
1
2n
)-(1+
1
2
+
1
3
+
+
1
n

=
1
n+1
+
1
n+2
+
+
1
2n
.(12分)
证法1:∵Tn+1-Tn=
1
n+2
+
1
n+3
+
+
1
2n+2
-
1
n+1
+
1
n+2
+
…+
1
2n

=
1
2n+1
+
1
2n+2
-
1
n+1

=
1
2n+1
-
1
2n+2
=
1
(2n+1)(2n+2)
>0

∴Tn+1>Tn.(14分)
证法2:∵2n+1<2n+2,
1
2n+1
1
2n+2

Tn+1-Tn
1
2n+2
+
1
2n+2
-
1
n+1
=0

∴Tn+1>Tn.(12分)
点评:本题考查数列的通项公式的求法,考查数列前n项和公式的应用,解题时要认真审题,仔细解答,注意迭代法、错位相减法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案