【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2
,
),曲线C的参数方程为
(θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.
科目:高中数学 来源: 题型:
【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若
,则实数m的取值范围是( )
A.(﹣∞,1]
B.![]()
C.[1,+∞)
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1(﹣c,0)、F2(c、0)分别是椭圆G:
+
=1(0<b<a<3)的左、右焦点,点P(2,
)是椭圆G上一点,且|PF1|﹣|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若
⊥
,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图1中,四边形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于点N,DN=3
,MN=
,现将梯形ABCD沿EF折起,记折起后C、D为C'、D'且使D'M=2
,如图2示. ![]()
(Ⅰ)证明:D'M⊥平面ABFE;,
(Ⅱ)若图1中,∠A=60°,求点M到平面AED'的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex﹣
ax2(a∈R).
(1)当a≤1时,求f(x)的单调区间;
(2)当x∈(0,+∞)时,y=f′(x)的图象恒在y=ax3+x﹣(a﹣1)x的图象上方,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2. ![]()
(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为
,求锐二面角A﹣A1C﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在Z上的函数f(x),对任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)=
,则f(0)+f(1)+f(2)+…+f(2017)= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com