已知椭圆
的离心率为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆于
、
两点,连结
、
分别交直线
于
、
两点.试问直线
、
的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
(1)
;(2)详见解析.
解析试题分析:(1)由直线和圆相切,求
,再由离心率
,得
,从而求
,进而求椭圆
的方程;(2)要说明直线
、
的斜率之积是否为定值,关键是确定
、
两点的坐标.首先设直线
的方程,并与椭圆联立,设
,利用三点共线确定
、
两点的坐标的坐标,再计算直线
、
的斜率之积,这时会涉及到
,结合根与系数的关系,研究其值是否为定值即可.
试题解析:(1)![]()
,故
4分
(2)设
,若直线
与纵轴垂直, ![]()
则
中有一点与
重合,与题意不符,
故可设直线
. 5分
将其与椭圆方程联立,消去
得:
6分
7分
由
三点共线可知,
,
, 8分
同理可得
9分
10分
而
11分
所以![]()
故直线
、
的斜率为定值
. 13分
考点:1、椭圆的标准方程和简单几何性质;2、直线和椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知点
是抛物线
上不同的两点,点
在抛物线
的准线
上,且焦点
到直线
的距离为
.
(I)求抛物线
的方程;
(2)现给出以下三个论断:①直线
过焦点
;②直线
过原点
;③直线
平行
轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的两个焦点分别为
,且点
在椭圆C上,又
.
(1)求焦点F2的轨迹
的方程;
(2)若直线
与曲线
交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
:
和
:![]()
的焦点分别为
,
交于
两点(
为坐标原点),且![]()
.
(1)求抛物线
的方程;
(2)过点
的直线交
的下半部分于点
,交
的左半部分于点
,点
坐标为
,求△
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若
= 2
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的右焦点![]()
,长轴的左、右端点分别为
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的准线与x轴交于点M,过点M作圆
的两条切线,切点为A、B,
.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点![]()
与分别在
轴、
轴上的动点
满足:
,动点
满足
.
(1)求动点
的轨迹的方程;
(2)设过点
任作一直线与点
的轨迹交于
两点,直线
与直线
分别交于点
(
为坐标原点);
(i)试判断直线
与以
为直径的圆的位置关系;
(ii)探究
是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(1)求此椭圆的离心率;
(2)求证:以线段
为直径的圆过点
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com