精英家教网 > 高中数学 > 题目详情

已知数学公式
(Ⅰ)若函数h(x)=f(x)-g(x)存在单调递减区间,求实数a的取值范围;
(Ⅱ)当a=-1时,求证:x≤eg(x)-2数学公式成立
(Ⅲ)求f(x)-x的最大值,并证明当n>2,n∈N*时,数学公式(e为自然对数lnx的底数)

(Ⅰ)解:函数
所以在(0,+∞)上有解,
即ax2+3x-1>0在(0,+∞)上有解,由ax2+3x-1>0得
因为当x>0,
所以a的范围是…(4分)
(Ⅱ)证明:原不等式即为f(x)<g(x)-2,构造函数φ(x)=f(x)-g(x)+2

对于恒成立,
∴φ(x)单调递增
=
∴f(x)<g(x)-2
∴x≤eg(x)-2成立,原不等式得证 …(9分)
(Ⅲ)解:∵,令m(x)=f(x)-x=lnx-x,

所以函数m(x)在(0,1)上递增,在(1,+∞)上递减,
所以m(x)≤m(1),即f(x)-x的最大值为-1
证明:由m(x)≤m(1)得lnx≤-1+x

=…(14分)
分析:(Ⅰ)函数,函数h(x)=f(x)-g(x)存在单调递减区间,等价于在(0,+∞)上有解,即ax2+3x-1>0在(0,+∞)上有解,再利用分离参数法,即可求得a的范围;
(Ⅱ)原不等式即为f(x)<g(x)-2,构造函数φ(x)=f(x)-g(x)+2,可确定φ(x)单调递增,从而原不等式得证;
(Ⅲ)根据,令m(x)=f(x)-x=lnx-x,利用导数可知函数m(x)在(0,1)上递增,在(1,+∞)上递减,从而可得f(x)-x的最大值为-1,进而可得lnx≤-1+x,再利用放缩法即可证得.
点评:本题重点考查导数知识的运用,考查利用导数研究函数的单调性,证明不等式,考查放缩法的运用,综合性比较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1-cosx,2sin
x
2
),
b
=(1+cosx,2cos
x
2
)
,设f(x)=2+sinx-
1
4
|
a
-
b
|2

(Ⅰ)求f(x)的表达式;
(Ⅱ)若函数g(x)和函数f(x)的图象关于原点对称,
(ⅰ)求函数g(x)的解析式;
(ⅱ)若函数h(x)=g(x)-λf(x)+1在区间[-
π
2
π
2
]
上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+ax2(常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数h(x)=f(x)+16x+8在x∈[2,+∞) 时为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x,g(x)=ax2(a≠0)
(1)若a=1,求函数H(x)=f(x)-g(x)的单调区间;
(2)若函数H(x)=f(x)-g(x)在其定义域上不单调,求实数a的取值范围;
(3)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数a的值并求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,x∈[-1,1]
(1)若函数f(x)的最小值为g(a),求g(a);
(2)判断并证明函数g(x)的奇偶性;
(3)若函数h(x)=g(x)-x-m有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

同步练习册答案