设函数
(
,b∈Z),曲线
在点(2,
)处的切线方程为
=3.
(1)求
的解析式;
(2)证明:曲线
=
上任一点的切线与直线
和直线
所围三角形的面积为定值,并求出此定值.
(1)f(x)=x+
(2)2.
解析试题分析:(1)解 f′(x)=a-
,于是
解得
或![]()
因为a,b∈Z,故f(x)=x+
.(4分)
(2)证明 在曲线上任取一点(x0,x0+
),
由f′(x0)=1-
知,过此点的切线方程为y-
=
(x-x0).(6分)
令x=1,得y=
,切线与直线x=1的交点为
;
令y=x,得y=2x0-1,切线与直线y=x的交点为(2x0-1,2x0-1);
直线x=1与直线y=x的交点为(1,1),从而所围三角形的面积为![]()
|2x0-1-1|=![]()
|2x0-2|=2.所以,所围三角形的面积为定值2.(10分)
考点:导数的几何意义,和三角形面积
点评:主要是考查了导数的几何意义求解切线方程,以及三角形的面积,属于基础题。
科目:高中数学 来源: 题型:解答题
已知函数
,
(其中
).
(1)求
的单调区间;
(2)若函数
在区间
上为增函数,求
的取值范围;
(3)设函数
,当
时,若存在
,对任意的
,总有
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=x3-12x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.(其中
为自然对数的底数).
(1)设曲线
在
处的切线与直线
垂直,求
的值;
(2)若对于任意实数
≥0,
恒成立,试确定实数
的取值范围;
(3)当
时,是否存在实数
,使曲线C:
在点
处的切线与
轴垂直?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com