精英家教网 > 高中数学 > 题目详情
(2009•武昌区模拟)设函数f(x)=
a
b
,其中向量
a
=(m,cosx),
b
=(1+sinx,1)
,x∈R,且f(
π
2
)=2
.   
(Ⅰ)求实数m的值; 
(Ⅱ)求函数f(x)在区间[-
π
2
π
2
]
上的最大值.
分析:(I)由已知中向量
a
=(m,cosx),
b
=(1+sinx,1)
,函数f(x)=
a
b
,根据向量数量积运算法则,我们易求出函数的解析式,结合f(
π
2
)=2
,我们可以构造一个关于m的方程,进而求出m的值.
(II)由(I)中结论,我们可以求出函数f(x)的解析式,利用辅助角公式,我们可将其化为正弦型函数的形式,进而根据正弦型函数的性质,求出函数f(x)在区间[-
π
2
π
2
]
上的最大值.
解答:解:(Ⅰ)f(x)=
a
b
=m(1+sinx)+cosx
.(3分)
f(
π
2
)=m(1+sin
π
2
)+cos
π
2
=2
,得m=1. (5分)
(Ⅱ)由(Ⅰ)得f(x)=sinx+cosx+1=
2
sin(x+
π
4
)+1
.(8分)
-
π
2
≤x≤
π
2
,得-
π
4
≤x+
π
4
4

∴当x+
π
4
=
π
2
,即x=
π
4
时,函数f(x)有最大值
2
+1
.(12分)
点评:本题考查的知识点是三角函数的最值,平面向量数量积的运算,其中(I)的关键是根据平面向量数量积的运算公式,结合f(
π
2
)=2
,构造一个关于m的方程,(II)的关键是辅助角公式,将函数f(x)的解析式化为正弦型函数的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•武昌区模拟)若二项式(3x2-
1
x
)n
的展开式中各项系数的和是512,则展开式中的常数项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)已知四棱锥 P-ABCD的底面是直角梯形,AB∥DC,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.
(Ⅰ)求证:PA⊥BD;  
(Ⅱ)求二面角P-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函数f(x)的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
lim
x→0
f(x)=f(0)

其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)在等比数列{an}中,an>0,且a1+a2=1,S4=10,则a4+a5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)如图,在半径为
6
cm,圆心角为60°的扇形OAB中,点C为弧AB的中点,按如图截出一个内接矩形,则矩形的面积为
3
3
cm2

查看答案和解析>>

同步练习册答案