精英家教网 > 高中数学 > 题目详情
8.已知等差数列{an}中,a7+a9=16,a4=4,则a6的值是(  )
A.12B.8C.6D.4

分析 由题意和等差数列的性质可得a8=8,a4+a8=2a6,代值计算可得.

解答 解:∵等差数列{an}中a7+a9=2a8=16,
∴a8=8,又∵a4=4,a4+a8=2a6
∴a6=$\frac{1}{2}$(4+8)=6
故选:C

点评 本题考查等差数列的通项公式和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,M为对角线AC上一点,且$\overrightarrow{{A}{M}}=\frac{1}{3}\overrightarrow{{A}C}$,设$\overrightarrow{{A}{B}}=\vec a$,$\overrightarrow{{A}D}=\vec b$,则$\overrightarrow{{M}{A}}+\overrightarrow{{M}{B}}$=(  )
A.$\frac{1}{3}\vec a+\frac{1}{3}\vec b$B.$\frac{1}{3}\vec a+\frac{2}{3}\vec b$C.$\frac{1}{3}\vec a-\frac{2}{3}\vec b$D.$\frac{1}{3}\vec a-\frac{1}{3}\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:(x-1)2+(y-4)2=r2(r>0)
(Ⅰ)若直线x-y+5=0与圆C相交所得弦长为$2\sqrt{2}$,求半径r;
(Ⅱ)已知原点O,点A(2,0),若圆C上存在点P,使得$|PO|=\sqrt{2}|PA|$,求半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知奇函数f(x)是定义在(-2,2)上的减函数,若f(m-1)+f(1-2m)>0,则实数m取值范围为(  )
A.m>0B.0<m<$\frac{3}{2}$C.-1<m<3D.-<m<$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.命题p:不等式ax2-2ax+1>0的解集为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a<0恒成立,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM:GA=1:3,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知a>0,b>0,c>1且a+b=1,则($\frac{{a}^{2}+1}{ab}$-2)•c+$\frac{\sqrt{2}}{c-1}$的最小值为$4+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一系列函数的解析式相同,值域相同,但定义域不同,称这些函数为同族函数.那么,函数的解析式为y=x2,值域为{4,9}的同族函数共有(  )
A.7个B.8个C.9个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式x2+mx+n<0的解集为{x|-1<x<2},则m,n的值分别为(  )
A.1,2B.1,-2C.-1,2D.-1,-2

查看答案和解析>>

同步练习册答案