精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知向量
m
=(cosA-2cosC,2c-a)
n
=(cosB,b)
平行.
(1)求
sinC
sinA
的值;
(2)若bcosC+ccosB=1,△ABC周长为5,求b的长.
分析:(1)利用向量共线的条件,建立等式,利用正弦定理,将边转化为角,利用和角公式,即可得到结论;
(2)由bcosC+ccosB=1利用余弦定理,求得a,再由(1)计算c,利用△ABC周长为5,即可求b的长.
解答:解:(1)由已知向量
m
=(cosA-2cosC,2c-a)
n
=(cosB,b)
平行
∴b(cosA-2cosC)=(2c-a)cosB,
由正弦定理,可设
a
sinA
=
b
sinB
=
c
sinC
=k≠0
,则(cosA-2cosC)ksinB=(2ksinC-ksinA)cosB,
即(cosA-2cosC)sinB=(2sinC-sinA)cosB,…(3分)
化简可得sin(A+B)=2sin(B+C),
又A+B+C=π,所以sinC=2sinA,
因此
sinC
sinA
=2
.…(6分)
(2)bcosC+ccosB=b•
a2+b2-c2
2ab
+c
a2+c2-b2
2ac
=
2a2
2a
=a=1
,…(8分)
由(1)知
c
a
=
sinC
sinA
=2
,∴c=2,…(10分)
由a+b+c=5,得b=2.…(12分)
点评:本题考查向量知识的运用,考查正弦定理、余弦定理,解题的关键是边角互化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案