如图,已知多面体
中,
⊥平面
,
⊥平面
,
,
,
为
的中点.![]()
(1)求证:
⊥平面
;
(2)求二面角
的大小.
(1)根据题意,由于DE⊥平面ACD,AF
平面ACD,∴DE⊥AF,那么同时AF⊥CD,得到证明。
(2)![]()
解析试题分析:(Ⅰ)∵DE⊥平面ACD,AF
平面ACD,∴DE⊥AF.
又∵AC=AD,F为CD中点,∴AF⊥CD,
因CD∩DE=D,∴AF⊥平面CDE.
(Ⅱ)取CE的中点Q,连接FQ,因为F为CD的中点,则FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,FQ,FA两两垂直,以O为坐标原点,建立如图坐标系,![]()
则F(0,0,0),C(
,0,0),A(0,0,
),B(0,1,
),E(1,2,0).
设面ABC的法向量
,则![]()
即
取.![]()
又平面ACD的一个法向量为
,则
即![]()
![]()
∴
.
∴二面角
的大小为
。
考点:线面的垂直以及二面角的平面角
点评:主要是考查了空间中线面的垂直的位置关系,以及二面角的求解,体现了向量法的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
如图,直三棱柱
的侧棱长为3,
,且
,
、
分别是棱
、
上的动点,且![]()
(1)证明:无论
在何处,总有
;
(2)当三棱柱
.的体积取得最大值时,求异面直线
与
所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,
. ![]()
(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.![]()
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆锥顶点为
.底面圆心为
,其母线与底面所成的角为
.
和
是底面圆
上的两条平行的弦,轴
与平面
所成的角为
, ![]()
(Ⅰ)证明:平面
与平面
的交线平行于底面;
(Ⅱ)求
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角梯形ABCD中,AD//BC,
,
,如图(1).把
沿
翻折,使得平面
,如图(2).![]()
(Ⅰ)求证:
;
(Ⅱ)求三棱锥
的体积;
(Ⅲ)在线段
上是否存在点N,使得![]()
?若存在,请求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直三棱柱
的三视图如图所示,
是
的中点.![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)试问线段
上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
边长为2的正方形ABCD所在平面外有一点P,
平面ABCD,
,E是PC上的一点.
(Ⅰ)求证:AB//平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)线段
为多长时,
平面
?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com