精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
x
+x+(a-1)lnx+15a,其中a<0,且a≠1
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设函数g(x)=
(-2x3+3ax2+6ax-4a2-6a)ex(x≤1)
e•f(x)                  (x>1)
 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.
分析:(1)先求出函数的定义域,然后求出f′(x)=0得到函数的稳定点,讨论a的大小得到导函数的大小即可得到函数的单调区间;
(2)存在a,令h(x))=(-2x3+3ax2+6ax-4a2-6a)ex(x∈R),求出导函数,然后再令m(x)=-2x3+3(a-2)x2+12ax-4a2(x∈R),讨论g(x)在[a,-a]上为减函数,当且仅当f(x)在[1,-a]上为减函数,h(x)在[a,1]上为减函数,且h(1)≥e•f(1)得到三个关于a范围的式子,求出解集即可得到a的范围.
解答:解:(1)f(x)的定义域为(0,+∞).f′(x)=-
a
x2
+1+
a-1
x
=
(x+a)(x-1)
x2

①若-1<a<0,则当0<x<-a时,f′(x)>0;当-a<x<1时,f′(x)<0;当x>1时,f′(x)>0.故f(x)分别在(0,-a),(1,+∞)上单调递增,在(-a,1)上单调递减.
②若a<-1,仿①可得f(x)分别在(0,1),(-a,+∞)上单调递增,在(1,-a)上单调递减;
(2)存在a,使g(x)在[a,-a]上为减函数.事实上,设h(x)=(-2x3+3ax2+6ax-4a2-6a)ex(x∈R),则h′(x)=[-2x3+3(a-2)x2+12ax-4a2]ex
再设m(x)=-2x3+3(a-2)x2+12ax-4a2(x∈R),
则g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递减所以h′(a)≤0,由于ex>0,
因此g(x)在[a,-a]上为减函数,当且仅当f(x)在[1,-a]上为减函数,h(x)在[a,1]上为减函数,且h(1)≥e•f(1).由(1)知,当a≤-2①时,f(x)在[1,-a]上为减函数.又h(1)≥e•f(1)?4a2+13a+3≤0?-3≤a≤-
1
4

不难知道,?x∈[a,1],h′(x)≤0??x∈[a,1],m(x)≤0,因m′(x)=-6x2+6(a-2)x+12a=-6(x+2)(x-a),令m′(x)=0,则x=a,或x=-2.而a≤-2,于是
(p)当a<-2时,若a<x<-2,则m′(x)>0;若-2<x<1,则m′(x)<0.因而m(x)在(a,-2)上单调递增,在
(-2,1)上单调递减.
(q)当a=-2时,m′(x)≤0,m(x)在(-2,1)上单调递减.
综合(p)(q)知,当a≤-2时,m(x)在[a,1]上的最大值为m(-2)=-4a2-12a-8.所以?x∈[a,1],m(x)≤0
?m(-2)≤0?-4a2-12a-8≤0?a≤-2③,
又对x∈[a,1],m(x)=0只有当a=-2时在x=-2取得,亦即h′(x)=0只有当a=-2时在x=-2取得.因此,当a≤-2时,h(x)在[a,1]上为减函数.
从而有①,②,③知,-3≤a≤-2
综上所述,存在a,使g(x)在[a,-a]上为减函数,且a的取值范围为[-3,-2].
点评:考查学生利用导数研究函数单调性的能力,运用分类讨论的数学思想解决数学问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案