精英家教网 > 高中数学 > 题目详情

已知设递增数列满足a1=6,且=+8(),则=(    )

    A.29               B.25       C.630      D.9

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中的真命题为
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)复平面中满足|z-2|-|z+2|=1的复数z的轨迹是双曲线;
(2)当a在实数集R中变化时,复数z=a2+ai在复平面中的轨迹是一条抛物线;
(3)已知函数y=f(x),x∈R+和数列an=f(n),n∈N,则“数列an=f(n),n∈N递增”是“函数y=f(x),x∈R+递增”的必要非充分条件;
(4)在平面直角坐标系xoy中,将方程g(x,y)=0对应曲线按向量(1,2)平移,得到的新曲线的方程为g(x-1,y-2)=0;
(5)设平面直角坐标系xoy中方程F(x,y)=0表椭圆示一个,则总存在实常数p、q,使得方程F(px,qy)=0表示一个圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=(k-4)x2+kx
 &(k∈R)
,对任意实数x,f(x)≤6x+2恒成立;正数数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)试写出一个区间(a,b),使得当an∈(a,b)时,数列{an}在这个区间上是递增数列,并说明理由;
(3)若已知,求证:数列{lg(
1
2
-an)+lg2}
是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知递增数列满足: ,且成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列项和为 。当时,试比较A与B的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知递增数列满足: ,且成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列项和为 。当时,试比较A与B的大小。

查看答案和解析>>

同步练习册答案