【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn=
,求适合方程b1b2+b2b3+…+bnbn+1=
的正整数n的值.
【答案】
(1)解:设公差为为d,a1=2,且a2+1,a4+1,a8+1成等比数列,
∴(a4+1)2=(a2+1)(a8+1),
∴(3d+3)2=(3+d)(3+7d),
解得d=3,
∴an=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1
(2)解:∵数列{bn}满足bn=
,
∴bn=
,
∴bnbn+1=
=3(
﹣
)
∴b1b2+b2b3+…+bnbn+1=3(
﹣
+
﹣
++
﹣
)=3(
﹣
)=
,
即
=
,
解得n=10,
故正整数n的值为10
【解析】(1)由a2+1,a4+1,a8+1成等比数列,建立关于d的方程,解出d,即可求数列{an}的通项公式;(2)表示出bn , 利用裂项相消法求出b1b2+b2b3+…+bnbn+1 , 建立关于n的方程,求解即可
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,直线
经过椭圆的右焦点与椭圆交于
两点,且
.
(I)求直线
的方程;
(II)已知过右焦点
的动直线
与椭圆
交于
不同两点,是否存在
轴上一定点
,使
?(
为坐标原点)若存在,求出点
的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<
<1.4143,估计ln2的近似值(精确到0.001).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,该函数所表示的曲线上的一个最高点为
,由此最高点到相邻的最低点间曲线与
轴交于点
.
(1)求
函数解析式;
(2)求函数
的单调区间;
(3)若
,求
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | ||
不积极参加体育锻炼 | 15 | ||
总计 | 100 |
(1)完成上表;
(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(
的观测值精确到0.001).
参考公式:
,
参考数据:
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+
)=
,曲线C的参数方程为: ![]()
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集为(﹣1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若
=2,且b=2
,求a+c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=
,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com