¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄ²»¶¯µã.

ÒÑÖªº¯Êýf£¨x£©=ax2+£¨b+1£©x+£¨b£­1£©£¨a¡Ù0£©.

£¨1£©µ±a=1£¬b=£­2ʱ£¬Çóº¯Êýf£¨x£©µÄ²»¶¯µã£»

£¨2£©Èô¶ÔÈÎÒâʵÊýb£¬º¯Êýf£¨x£©ºãÓÐÁ½¸öÏàÒìµÄ²»¶¯µã£¬ÇóaµÄȡֵ·¶Î§£»

£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôy=f£¨x£©Í¼ÏóÉÏA¡¢BÁ½µãµÄºá×ø±êÊǺ¯Êýf£¨x£©µÄ²»¶¯µã£¬ÇÒA¡¢BÁ½µã¹ØÓÚÖ±Ïßy=kx+¶Ô³Æ£¬ÇóbµÄ×îСֵ.

 

´ð°¸£º
½âÎö£º

½â£º£¨1£©f£¨x£©=x2£­x£­3£¬ÒòΪx0Ϊ²»¶¯µã£¬Òò´ËÓÐf£¨x0£©=x02£­x0£­3=x0

ËùÒÔx0=£­1»òx0=3£¬ËùÒÔ3ºÍ£­1Ϊf£¨x£©µÄ²»¶¯µã.

£¨2£©ÒòΪf£¨x£©ºãÓÐÁ½¸ö²»¶¯µã£¬f£¨x£©=ax2+£¨b+1£©x+£¨b£­1£©=x£¬ax2+bx+£¨b£­1£©=0£¨¡ù£©£¬ÓÉÌâÉèb2£­4a£¨b£­1£©£¾0ºã³ÉÁ¢£¬¼´¶ÔÓÚÈÎÒâb¡ÊR£¬b2£­4ab+4a£¾0ºã³ÉÁ¢£¬ËùÒÔÓУ¨4a£©2£­4£¨4a£©£¼0a2£­a£¼0£¬ËùÒÔ0£¼a£¼1.

£¨3£©ÓÉ£¨¡ù£©Ê½£¬µÃ£¬ÓÉÌâÉèk=£­1£¬¼´y=£­x+£¬ÉèA¡¢BµÄÖеãΪE£¬ÔòE£¨£©£¬ÒòΪxE=yE£¬ËùÒÔ£­

ËùÒÔÓÐb=£­£¬ÒòΪ0£¼a£¼1.µ±ÇÒ½öµ±2a=ʱ£¬¼´a=ʱ£¬bÈ¡µÃ×îСֵ£¬Æä×îСֵΪ£­.

 


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äM=[a£¬b]£¨ÆäÖÐa£¼b£©£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊM}=M£¬Ôò³ÆÇø¼äMΪº¯Êýf£¨x£©µÄÒ»¸ö¡°Îȶ¨Çø¼ä¡±£®¸ø³öÏÂÁÐ4¸öº¯Êý£º
¢Ùf£¨x£©=£¨x-1£©2£»¢Úf£¨x£©=|2x-1|£»¢Ûf(x)=cos
¦Ð2
x
£»¢Üf£¨x£©=ex£®ÆäÖдæÔÚ¡°Îȶ¨Çø¼ä¡±µÄº¯ÊýÓÐ
 
£¨Ìî³öËùÓÐÂú×ãÌõ¼þµÄº¯ÊýÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬ÈôÔÚÆä¶¨ÒåÓòÄÚ´æÔÚÁ½¸öʵÊýa£¬b£¨a£¼b£©£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬f£¨x£©µÄÖµÓòÒ²ÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©Îª¡°¿Æ±Èº¯Êý¡±£®Èôº¯Êýf£¨x£©=k+
x+2
ÊÇ¡°¿Æ±Èº¯Êý¡±£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄ²»¶¯µã£®Èç¹ûº¯Êý
f£¨x£©=ax2+bx+1£¨a£¾0£©ÓÐÁ½¸öÏàÒìµÄ²»¶¯µãx1£¬x2£®
£¨1£©Èôx1£¼1£¼x2£¬ÇÒf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=m¶Ô³Æ£¬ÇóÖ¤£º
12
£¼m£¼1£»
£¨2£©Èô|x1|£¼2ÇÒ|x1-x2|=2£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èôf£¨x0£©=x0£¬Ôò³Æx0Ϊf£¨x£©µÄ£º¡°²»¶¯µã¡±£»Èôf[f£¨x0£©]=x0£¬Ôò³Æx0Ϊf£¨x£©µÄ¡°Îȶ¨µã¡±£®º¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±ºÍ¡°Îȶ¨µã¡±µÄ¼¯ºÏ·Ö±ð¼ÇΪAºÍB£¬¼´A={x|f[f£¨x£©]=x}£®
£¨1£©É躯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬ÇÒA=∅£¬ÇóÖ¤£ºB=∅£»
£¨2£©É躯Êýf£¨x£©=3x+4£¬Ç󼯺ÏAºÍB£¬²¢·ÖÎöÄÜ·ñ¸ù¾Ý£¨1£©£¨2£©ÖеĽáÂÛÅжÏA=Bºã³ÉÁ¢£¿ÈôÄÜ£¬Çë¸ø³öÖ¤Ã÷£¬Èô²»ÄÜ£¬Çë¾ÙÒÔ·´Àý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄ²»¶¯µã£®Èôº¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬ÇÒf£¨-2£©£¼-
1
2
£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£¬
£¨2£©ÒÑÖª¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬ÆäÖÐSn±íʾÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇóÖ¤£º(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an

£¨3£©ÔÚ£¨2£©µÄǰÌâÌõ¼þÏ£¬Éèbn=-
1
an
£¬Tn±íʾÊýÁÐ{bn}µÄǰnÏîºÍ£¬ÇóÖ¤£ºT2011-1£¼ln2011£¼T2010£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸