精英家教网 > 高中数学 > 题目详情
已知线段BC和平面内任意一点A,若线段AB、BC、AC的长度依次成等差数列,则A点的运动轨迹是(  )
分析:AB、BC、AC成等差数列⇒AB+AC=2BC,由椭圆定义知A点的运动轨迹是椭圆.
解答:解:∵AB、BC、AC成等差数列,
∴AB+AC=2BC,
∴由椭圆定义知A点的运动轨迹是椭圆.
故选B.
点评:本题考查椭圆的定义,解题时要认真审题,仔细解答,熟练掌握圆锥曲线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为平面AC内的一点,Q为面BD内的一点,已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是AB,BC,B1C1的中点,则下列说法正确的是
①②③⑤
①②③⑤
 (写出所有正确命题的编号).
①P在直线EF上运动时,GP始终与平面AA1C1C平行;
②点Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;
③点M是平面A1B1C1D1上到点!?和.距离相等的点,则点M的轨迹是一条直线;
④以正方体ABCD-A1B1C1D1的任意两个顶点为端点连一条线段,其中与棱AA1异面的有10条;
⑤点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点E的距离的平方差为3,则点P的轨迹为拋物线.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知线段BC和平面内任意一点A,若线段AB、BC、AC的长度依次成等差数列,则A点的运动轨迹是


  1. A.
  2. B.
    椭圆
  3. C.
    双曲线
  4. D.
    抛物线

查看答案和解析>>

同步练习册答案