【题目】已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:
且n>1)
【答案】
(1)解:∵f(x)=1n(x﹣1)﹣k(x﹣1)+1,
∴x>1,
,
∵x>1,∴当k≤0时,
>0,f(x)在(1,+∞)上是增函数;
当k>0时,f(x)在(1,1+
)上是增函数,在(1+
,+∞)上为减函数
(2)解:∵f(x)≤0恒成立,
∴x>1,ln(x﹣1)﹣k(x1)+1≤0,
∴x>1,ln(x﹣1)≤k(x﹣1)﹣1,
∴k>0.
由(1)知,f(x)max=f(1+
)=ln
≤0,
解得k≥1.
故实数k的取值范围是[1,+∞)
(3)证明:令k=1,则由(2)知:ln(x﹣1)≤x﹣2对x∈(1,+∞)恒成立,
即lnx≤x﹣1对x∈(0,+∞)恒成立.
取x=n2,则2lnn≤n2﹣1,
即
,n≥2,
∴
且n>1)
【解析】(1)由f(x)=1n(x﹣1)﹣k(x﹣1)+1,知x>1,
,由此能求出f(x)的单调区间.(2)由f(x)≤0恒成立,知x>1,ln(x﹣1)≤k(x﹣1)﹣1,故k>0.f(x)max=f(1+
)=ln
≤0,由此能求出实数k的取值范围.(3)令k=1,能够推导出lnx≤x﹣1对x∈(0,+∞)恒成立.取x=n2 , 得到
,n≥2,由此能够证明
且n>1).
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和不等式的证明的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几何体ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面棱A1B1、B1C1的中点,P是上底面棱AD上的一点,
,过P、M、N三点的平面交上底面于PQ, Q在CD上,则PQ等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
![]()
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;
(2)证明:平面D1AC⊥平面BB1C1C;
(3)求点D到平面D1AC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的图象的相邻两对称中心的距离为π,且f(x+
)=f(﹣x),则函数y=f(
﹣x)是( )
A.偶函数且在x=0处取得最大值
B.偶函数且在x=0处取得最小值
C.奇函数且在x=0处取得最大值
D.奇函数且在x=0处取得最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=a(x﹣1). (Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点. ![]()
(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com