【题目】如图所示,某海滨养殖场有一块可用水城,该养殖场用隔离网
把该水域分为两个部分,其中
百米,现计划过
处再修建一条直线型隔离网,其端点分别在
上,记为![]()
![]()
(1)若要使得所围区域
面积不大于
平方百米,求
的取值范围:
(2)若要在
区域内养殖鱼类甲,
区域内养殖鱼类乙,已知鱼类甲的养殖成本是
万元/平方百米,鱼类乙的养殖成本是
万元/平方百米.试确定
的值,使得养殖成本最小,
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若曲线
上一点
的极坐标为
,且
过点
,求
的普通方程和
的直角坐标方程;
(2)设点
,
与
的交点为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
)的图象为曲线
.
(Ⅰ)求曲线
上任意一点处的切线的斜率的取值范围;
(Ⅱ)若曲线
上存在两点处的切线互相垂直,求其中一条切线与曲线
的切点的横坐标的取值范围;
(Ⅲ)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
(常数
),![]()
.数列
满足:![]()
.
(1)求![]()
![]()
![]()
的值;
(2)求出数列
的通项公式;
(3)问:数列
的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C的对边分别为a,b,c,且(a+b﹣c)(sinA+sinB+sinC)=bsinA.
(1)求C;
(2)若a=2,c=5,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率
进行了统计,结果如表:
月份 |
|
|
|
|
|
|
月份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |
请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率
如果不能,请说明理由.
根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元
辆和800元
辆的A,B两款车型,报废年限各不相同
考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:
报废年限 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年可以为公司带来收入500元
不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?
参考数据:
,
,![]()
参考公式:相关系数![]()
回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且
交椭圆
于
两点,点
在直线
上的射影依次为
.
(1)求椭圆
的方程;
(2)若直线
交
轴于点
,且
,当
变化时,证明:
为定值;
(3)当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com