精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,已知PA⊥AB,PC⊥BC,AC=PC=,PA=,PB=,D、F分别是PB、AC的中点,
(1)求证直线DF⊥平面ABC;
(2)求二面角C-PA-B大小的余弦值.

(1)证明:如图①,取AB、BC的中点E、G,连接DE、EF、DG、FG,
则FG∥AB,EF∥BC,DE∥PA,
∵PA⊥AB,∴DE⊥AB,
由勾股定理可得AB=2,BC=1,
又AC=
∴AC2=AB2+BC2
∴AB⊥BC,∴EF⊥AB,
∴AB⊥平面DEF,
∴DF⊥AB,同理DF⊥BC,
又AB、BC相交于B点,
∴直线DF⊥平面ABC。
(2)解:如图②,取PA的中点Q,连接QD,DC,QC,
∵PC=CA,PQ=QA,∴CQ⊥PA,
∵AB∥QD,AB⊥PA,
∴DQ⊥PA,
∴∠DQC为二面角C-PA-B的平面角,
在Rt△PCB中,
在△PAB中,
在△QAC中,
所以,在△DQC中,由余弦定理,可得
∴二面角C-PA-B的大小的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案