精英家教网 > 高中数学 > 题目详情
如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且
AB
AC
=50

(I)求sin∠BAD的值;
(II)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求
S△ABD
S△BCD
的值.
分析:(I)首先在Rt△ABC中利用勾股定理求出AC=10,并且得出∠CAD的正弦、余弦,再结合AB=13且
AB
AC
=50
,计算出∠BAC的正弦、余弦,最后利用两角和的正弦公式,可以求出sin∠BAD的值;
(II)根据正弦定理的面积公式,结合(I)中的数据分别求出三角形BAD、三角形BAC、三角形ACD的面积,最后求出三角形BCD,最后可以得到所要的两个三角形的面积的比值.
解答:解:(I)在Rt△ADC中,AD=8,CD=6,
则AC=10,cos∠CAD=
4
5
,sin∠CAD=
3
5
…(1分)
又∵
AB
AC
=50,AB=13
∴cos∠BAC=
AB
AC
|
AB
 || 
AC
|
=
5
13
…(2分)
∵0<∠BAC<180°,
∴sin∠BAC=
12
13
…(4分)
∴sin∠BAD=sin(∠BAC+∠CAD)
=sin∠BACcos∠CAD+cos∠BACsin∠CAD=
63
65
…(6分)
(II)根据正弦定理的面积公式,可得
三角形BAD的面积为S△BAD=
1
2
AB•ADsin∠BAD=
252
5
…(8分)
同理,三角形ABC与三角形ACD的面积分别为:
S△BAC=
1
2
AB•ACsin∠BAC=60,S△ACD
=24…(10分)
则S△BCD=S△ABC+S△ACD-S△BAD=
168
5

S△ABD
S△BCD
=
3
2
…(12分)
点评:本题着重考查了向量在几何中的应用,属于中档题.解题过程中同时运用了正弦定理的面积公式和向量数量积的公式,是高考中的常考知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,△ABC为边长等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
35
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

同步练习册答案