活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充.函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.
解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r.
∴S=
l·r=
(a-2r)·r=-r2+
r=-(r-
)2+
.
∵r>0,l=a-2r>0,∴0<r<
.
∴当r=
时,
=
此时,l=a-2·
=
,∴α=
=2.
故当扇形的圆心角为2rad时,扇形的面积取最大值![]()
点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角.
科目:高中数学 来源:2011-2012学年江西省抚州市临川十中高一(上)期末数学试卷(解析版) 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com