已知抛物线
的焦点为F,以点
为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点。
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由。
解:(I)因为该抛物线的焦点F的坐标为
,故|FA|=4
所以,该圆的方程为![]()
它与
轴的上方交于
![]()
把
中并化简得:
|
由(1)(2)(3)得![]()
又由抛物线定义可得:![]()
所以|FM|+|FN|=![]()
而|MN|<|FM|+|FN|=8
又点F,M,N均在圆上,所以,|AN|=|AM|=|AF|=4
所以,|AM|+||AN=8,
因为,|AM|+|AN|=|FM|+|FN|=8,|MN|<8
所以,点A在以M、N为焦点,且过点F的椭圆上, ………………8分
(II)若存在满足条件的实数a,
则有![]()
设点P的坐标为![]()
![]()
由(2)(3)得![]()
这与
矛盾
故不存在这样的a,使得|FP|是|FM|与|FN|的等差中项 ………………13分
科目:高中数学 来源:2013-2014学年浙江省高三上学期第三次统练文科数学试卷(解析版) 题型:解答题
如图,已知抛物线
的焦点为F,过F的直线交抛物线于M、N两点,其准线
与x轴交于K点.
![]()
(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(二)理数学卷(解析版) 题型:填空题
已知抛物线
的焦点为F,过抛物线在第一象限部分上一点P的切线为
,过P点作平行于
轴的直线
,过焦点F作平行于
的直线交
于M,若
,则点P的坐标为 。
查看答案和解析>>
科目:高中数学 来源:2012届河北省唐山市高三年级第一学期期末考试理科数学试卷(解析版) 题型:解答题
(本小题满分12分)已知抛物线
的焦点为F,过点F作直线
与抛物线交于A,B两点,抛物线的准线与
轴交于点C。
(1)证明:
;
(2)求
的最大值,并求
取得最大值时线段AB的长。
查看答案和解析>>
科目:高中数学 来源:2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 题型:解答题
(本小题满分12分)(注意:在试题卷上作答无效)
已知抛物线
的焦点为F,过点
的直线
与
相交于
、
两点,点A关于
轴的对称点为D .
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设
,求
的内切圆M的方程 .
查看答案和解析>>
科目:高中数学 来源:2010-2011年黑龙江省高二上学期期末考试数学理卷 题型:选择题
已知抛物线
的焦点为F,准线为
,经过F且斜率为
的直线与抛物线在
轴上方的部分相交于点A,且AK![]()
,垂足为K,则
的面积是( )
A 4 B
C
D 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com