【题目】设集合
由满足下列两个条件的数列
构成:①
②存在实数
使
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
其中
;
试判断数列
是否为集合
的元素;
(2)数列
的前
项和为
且对任意正整数
点
在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
且对满足条件②中的实数
的最小值
都有
求证:数列
一定是单调递增数列.
【答案】(1)数列
不是集合
中的元素;数列
是集合
中的元素(2)证明见解析,实数
的取值范围是
实数
的取值范围是
(3)证明见解析
【解析】
(1)由于
,可知数列
不满足条件①,对数列
中的每项逐一验证性质①,根据对数的运算性质可得性质②,进而可得结果;(2)由于点在直线上,可得
,利用递推关系可得:
,利用等比数列的前
项和公式可得
,验证
,可知条件①成立,由于
,即可得出条件②及其
,
的范围;(3)利用反证法:若数列
非单调递增,则一定存在正整数
,使
成立,再结合数学归纳法证明即可.
(1)对于数列
,∵
,不满足集合
的条件①,
∴数列
不是集合
中的元素.
对于数列
,∵
,
,
,而且,当
时有
显然满足集合
的条件①②,故数列
是集合
中的元素.
(2)因为点
在直线
上,
所以
①当
时,有
②
①
②,得
所以,当
时,有![]()
又
,所以![]()
因此对任意正整数
都有
,所以数列
是公比为
的等比数列,
故![]()
对任意正整数
,都有
,且
,
故
,实数
的取值范围是
,实数
的取值范围是![]()
(3)假设数列
不是单递增数列,则一定存在正整数
,使
,
此时,我们用数学归纳法证明:对于任意的正整数
,当
时都有
成立.
①
时,显然有
成立;
②假设
时,![]()
则当
时,由
可得
从而有
![]()
所以![]()
由①②知,对任意的
都有
1
显然
这
个值中一定有一个最大的,不妨记为
于是![]()
从而
与已知条件
相矛盾.
所以假设不成立,故命题得证.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,
,
,过点
的直线与椭圆相交于点A,B两点,且![]()
(1)若
,求椭圆的方程;
(2)直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线
上有一点
在
的外接圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的左右顶点分别为
.直线
和两条渐近线交于点
,点
在第一象限且
,
是双曲线上的任意一点.
(1)求双曲线的标准方程;
(2)是否存在点P使得
为直角三角形?若存在,求出点P的个数;
(3)直线
与直线
分别交于点
,证明:以
为直径的圆必过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是数列
的前n项和,对任意
都有
,(其中k、b、p都是常数).
(1)当
、
、
时,求
;
(2)当
、
、
时,若
、
,求数列
的通项公式;
(3)若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”。当
、
、
时,
.试问:是否存在这样的“封闭数列”
.使得对任意
.都有
,且
.若存在,求数列
的首项
的所有取值的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体
的棱长为2,动点
在对角线
上,过点
作垂直于
的平面
,记平面
截正方体得到的截面多边形(含三角形)的周长为
,设
.
(1)下列说法中,正确的编号为__________.
①截面多边形可能为四边形;②
;③函数
的图象关于
对称.
(2)当
时,三棱锥
的外接球的表面积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况
单位:百元
,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:
组别 |
|
|
|
|
|
频数 | 10 | 390 | 400 | 188 | 12 |
求所得样本的中位数
精确到百元
;
根据样本数据,可近似地认为市民的旅游费用支出服从正态分布
,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;
若年旅游消费支出在
百元
以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.
参考数据:
,
;![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,
为椭圆上一动点(异于左右顶点),
面积的最大值为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于点
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com