精英家教网 > 高中数学 > 题目详情
在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°,且
(1)求三角形ABC的面积和边BC的长度;
(2)求sin∠BAD的值.

【答案】分析:(1)由题意可求得cos∠BAC,继而可得sin∠BAC,从而可得S△ABC,再由余弦定理求得BC即可;
(2)在Rt△CAD中,求得sin∠CAD,cos∠CAD,利用两角和的正弦即可求得答案.
解答:解:(1)由已知=13,==10,
=50⇒•cos∠BAC=50,
∴cos∠BAC=,(3分)
∴sin∠BAC=
则S△ABC=AB•ACsin∠BAC
=×13×10×
=60(5分)
由余弦定理得BC==13(7分)
(2)在Rt△CAD中,sin∠CAD===,cos∠CAD==,(9分)
∴sin∠BAD=sin(∠BAC+∠CAD)
=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=.(12分).
点评:本题通过考查平面向量数量积的运算,考查余弦定理及其应用,考查分析与运算的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,EF∥BC,FG∥AD,则
EF
BC
+
FG
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,CD∥AB,AB=4,CD=1,点M在PB上,且MB=3PM,PB与平面ABC成30°角.
(1)求证:CM∥面PAD;
(2)求证:面PAB⊥面PAD;
(3)求点C到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,
AB
=
DC
且|
AB
|=|
AD
|,则四边形的形状为
菱形
菱形

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,若
AC
BD
=0,
AB
=
DC
,则四边形ABCD的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是
∠ABC=90°或AC=BD(答案不唯一)
∠ABC=90°或AC=BD(答案不唯一)

查看答案和解析>>

同步练习册答案