精英家教网 > 高中数学 > 题目详情

如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=数学公式
(1)证明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱锥A-CBE的体积,当V(x) 取得最大值时,求直线AD与平面ACE所成角的正弦值.

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE
∵DC⊥平面ABC,BC?平面ABC,∴DC⊥BC
∵AB是圆O的直径,∴BC⊥AC
∵DC∩AC=C,∴BC⊥平面ADC.
∵DE∥BC,
∴DE⊥平面ADC
又∵DE?平面ADE,∴平面ACD⊥平面ADE;
(2)∵DC⊥平面ABC,CD∥BE,∴BE⊥平面ABC
∵AB?平面ABC,∴BE⊥AB,
在Rt△ABE中,由tan∠EAB==,AB=2得BE=
在Rt△ABC中,∵BC==(0<x<2)
∴S△ABC=AC•BC=
∴V(x)=VC-ABE=VE-ABC=S△ABC•BE==(0<x<2)
∵0<x<2,∴=2
∴V(x)≤,当且仅当x2=4-x2,即x=时,V(x)取得最大值,AC=
这时△ABC为等腰直角三角形
建立如图所示的坐标系,

C(0,0,0),A(,0,0),E(0,),D(0,0,),=(-,0,
设平面AEC的法向量,则,∴,∴可取=(0,-
设直线AD与平面ACE所成角为θ,则sinθ=cos<>===
故直线AD与平面ACE所成角的正弦值为
分析:(1)欲证平面ACD⊥平面ADE,根据面面垂直的判定定理可知在平面ADE内一直线与平面ACD垂直,而根据BC⊥平面ADC,DE∥BC,可得DE⊥平面ADC;
(2)先利用等体积法表示出三棱锥A-CBE的体积,利用基本不等式求最值,再建立空间直角坐标系,利用向量的夹角公式,即可求得直线AD与平面ACE所成角的正弦值.
点评:本题主要考查空间中的线面关系,考查面面垂直的判定及简单组合体体积的计算,考查线面角,考查向量知识的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次机器人足球比赛中,甲队1号机器人由点A开始作匀速直线运动,到达点B时,发现足球在点D处正以2倍于自己的速度向点A作匀速直线滚动.如图所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知
AB
=2
BC
OA
=
a
OB
=
b
OC
=
c
,则
c
=
 
.(用
a
b
表示)

查看答案和解析>>

同步练习册答案