设
,
,
(其中
为自然对数的底数),则
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
| 1 |
| 4 |
| 1 |
| 2 |
| n |
| k=1 |
| 3 |
| 8 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考理科数学试卷(解析版) 题型:解答题
已知函数
,其中a>0.
(Ⅰ)求函数
的单调区间;
(Ⅱ)若直线
是曲线
的切线,求实数a的值;
(Ⅲ)设
,求
在区间
上的最大值(其中e为自然对的底数)。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三12月月考理科数学试卷(解析版) 题型:解答题
(满分15分)设函数
,
,(其中
为自然底数);
(Ⅰ)求
(
)的最小值;
(Ⅱ)探究是否存在一次函数
使得
且
对一切
恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;
(Ⅲ)数列
中,
,
,求证:
。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com