精英家教网 > 高中数学 > 题目详情

(其中为自然对数的底数),则

A.        B.        C.        D.

 

【答案】

B

【解析】

试题分析:根据题意,由于,因为0<lge<1,故可知大小关系为,选B.

考点:对数式的运算

点评:解决的关键是根据对数的运算性质来得到,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+
1
4
g(x)=
1
2
ln(2ex)
,(其中e为自然底数);
(Ⅰ)求y=f(x)-g(x)(x>0)的最小值;
(Ⅱ)探究是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;
(Ⅲ)数列{an}中,a1=1,an=g(an-1)(n≥2),求证:
n
k=1
(ak-ak+1)•ak+1
3
8

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考理科数学试卷(解析版) 题型:解答题

已知函数,其中a>0.

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线是曲线的切线,求实数a的值;

(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三12月月考理科数学试卷(解析版) 题型:解答题

(满分15分)设函数,(其中为自然底数);

(Ⅰ)求)的最小值;

(Ⅱ)探究是否存在一次函数使得对一切恒成立;若存在,求出一次函数的表达式,若不存在,说明理由;

(Ⅲ)数列中,,求证:

 

查看答案和解析>>

科目:高中数学 来源:陕西省模拟题 题型:解答题

已知,函数(其中为自然对数的底数).  
(1)求函数在区间上的最小值;  
(2)设,当时,若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>

同步练习册答案