【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣1,其中n∈N* .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设anbn=
,求数列{bn}的前n项和为Tn .
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高 气温 | [10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | [35, 40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系
的坐标平面
内,若函数
的图象与
轴围成一个封闭区域
,将区域
沿
轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域
面积相等,则此圆柱的体积为__________.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
过点
,且与圆
关于直线
对称.
(1)求两圆的方程;
(2)若直线
与直线
平行,且截距为7,在
上取一横坐标为
的点
,过点
作圆
的切线,切点为
,设
中点为
.
(ⅰ)若
,求
的值;
(ⅱ)是否存在点
,使得
?若存在,求点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为
的正方体
中,
,
分别是
和
的中点.
![]()
(
)求异面直线
与
所成角的余弦值.
(
)在棱
上是否存在一点
,使得二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量
=(2sinA,cos(A﹣B)),
=(sinB,﹣1),且
=
.
(Ⅰ)求角C的大小;
(Ⅱ)若
,求b﹣a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合计 | 1.00 |
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=3sinx+2cosx+1.若实数a,b,c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则
的值为( )
A.﹣1
B.![]()
C.1
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com