精英家教网 > 高中数学 > 题目详情
设函数,其中向量
(1)若函数f(x)=1-,且x,求x;
(2)求函数y=f(x)的单调增区间.
【答案】分析:(1)把f(x)表示出来并化简,由f(x)=1-及x的范围可求x值;
(2)由正弦函数的单调性及复合函数单调性的判断方法可求其单调增区间.
解答:解:(1)依题设得f(x)=2
=1+cos2x+sin2x
=2sin(2x+)+1.
由2sin(2x+)+1=1-,得sin(2x+)=-
,∴-≤2x+
∴2x+=-,即x=-
(2)由(1)知,f(x)=2sin(2x+)+1.

解得+kπ≤x≤+kπ(k∈Z).
得函数单调区间为:[](k∈Z).
点评:本题考查平面向量的数量积运算及正弦函数的单调性问题,属基础题,要重视相关的基础知识基本方法的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年莱阳一中期末)(12分)

  设函数,其中向量

  (1)求函数的最小正周期和在上的单调递增区间;

  (2)当时,恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数,其中向量

(1)求函数的最大值和最小正周期;

(2)将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(22)(解析版) 题型:解答题

设函数,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的图象经过点
(1)求实数m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年甘肃省高三上学期期末考试理科数学试卷 题型:解答题

(本题满分12分)设函数,其中向量=(2cosx,1),=(cosx,

sin2x),x∈R.

(1)若f(x)=1-且x∈[-],求x;

(2)若函数y=2sin2x的图象按向量=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.

 

查看答案和解析>>

科目:高中数学 来源:2010年广东湛江市高一下学期期末考试数学卷 题型:解答题

(本小题满分12分)

设函数,其中向量,且的图象经过点.(1)求实数的值;

(2)求函数的最小值及此时值的集合.

 

查看答案和解析>>

同步练习册答案