【题目】已知函数f(x)=sin(x+
)+sin(x﹣
)+acosx+b,(a,b∈R)且均为常数).
(1)求函数f(x)的最小正周期;
(2)若f(x)在区间[﹣
,0]上单调递增,且恰好能够取到f(x)的最小值2,试求a,b的值.
【答案】
(1)解:)f(x)=sin(x+
)+sin(x﹣
)+acosx+b
=2sinxcos
+acosx+b=
sinx+acosx+b=
sin(x+θ)+b,
所以,函数f(x)的最小正周期为2π
(2)解:由(1)可知:f(x)的最小值为﹣
+b,所以,﹣
+b=2.①
另外,由f(x)在区间[﹣
,0]上单调递增,可知f(x)在区间[﹣
,0]上的最小值为f(﹣
),
所以,f(﹣
)=2,得a+2b=7,②
联立①②解得a=﹣1,b=4.
【解析】(1)利用和差化积公式和辅助角公式将已知函数关系式转化为正弦函数,然后由正弦函数的性质求其最小正周期;(2)根据正弦函数图象的单调性和正弦函数的最值的求法进行解答.
科目:高中数学 来源: 题型:
【题目】(2009四川卷文)设矩形的长为
,宽为
,其比满足
∶
=
,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是
A. 甲批次的总体平均数与标准值更接近
B. 乙批次的总体平均数与标准值更接近
C. 两个批次总体平均数与标准值接近程度相同
D. 两个批次总体平均数与标准值接近程度不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}与{bn}满足an=2bn+3(n∈N*),若{bn}的前n项和为Sn=
(3n﹣1)且λan>bn+36(n﹣3)+3λ对一切n∈N*恒成立,则实数λ的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(
吨)与相应的生产能耗
(吨)标准煤的几组对照数据:
| 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 |
![]()
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记实数x1 , x2 , …,xn中最小数为min{x1 , x2 , …,xn},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13﹣x}的最大值为( )
A.5
B.6
C.8
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,点M和N分别为A1B1和BC的中点.![]()
(1)求证:AC⊥BM;
(2)求证:MN∥平面ACC1A1;
(3)求二面角M﹣BN﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有50名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.34,则估计该班学生数学成绩在120分以上的人数为 ( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(I)求等差数列{an}的通项公式;
(II)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com