【题目】设
,下列命题:
①
既不是奇函数,也不是偶函数
②若
是三角形的内角,则
是增函数
③若
是三角形的内角, 则
有最大值而无最小值
④
的最小正周期是![]()
其中真命题的序号是( )
A.①②B.①③C.②③D.②④
科目:高中数学 来源: 题型:
【题目】设函数
,其中e为自然对数的底数.
(1)当a=0时,求函数f (x)的单调减区间;
(2)已知函数f (x)的导函数f (x)有三个零点x1,x2,x3(x1 x2 x3).①求a的取值范围;②若m1,m2(m1 m2)是函数f (x)的两个零点,证明:x1m1x1 1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年诺贝尔生理学或医学奖获得者威廉·凯林(WilliamG.KaelinJr)在研究肾癌的
抑制剂过程中使用的输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后
分钟,瓶内液面与进气管的距离为
厘米,已知当
时,
.如果瓶内的药液恰好
分钟滴完.则函数
的图像为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图甲),以及实验室每天每100颗种子中的发芽数情况(如图乙),得到如下资料:
![]()
最高温度
最低温度
甲
![]()
乙
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程
(系数精确到0.01);
②若12月7日的昼夜温差为
,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:![]()
![]()
![]()
.
参考公式:
相关系数:
(当
时,具有较强的相关关系).
回归方程
中斜率和截距计算公式:![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
,
,②
,
,③
,
三个条件中任选一个补充在下面问题中,并加以解答.
已知
的内角A,B,C的对边分别为a,b,c,若
,______,求
的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是椭圆W:
上的三个点,O是坐标原点.
(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com