设抛物线
的焦点为
,点
,线段
的中点在抛物线上.设动直线
与抛物线相切于点
,且与抛物线的准线相交于点
,以
为直径的圆记为圆
.
(1)求
的值;
(2)试判断圆
与
轴的位置关系;
(3)在坐标平面上是否存在定点
,使得圆
恒过点
?若存在,求出
的坐标;若不存在,说明理由.
(1)
(2)见解析 (3)存在 ![]()
解析试题分析:
(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.
(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.
(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点
在
轴上,设点
坐标为
,则M点需满足
,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.
试题解析:
解:(1)利用抛物线的定义得
,故线段
的中点的坐标为
,代入方程得
,解得
。 2分
(2)由(1)得抛物线的方程为
,从而抛物线的准线方程为
3分
由
得方程
,
由直线与抛物线相切,得
4分
且
,从而
,即
, 5分
由
,解得
, 6分
∴
的中点
的坐标为![]()
圆心
到
轴距离
,
∵![]()
8分
∵
,
∴当
时,
,圆
与
轴相切;
当
时,
,圆
与
轴相交; 9分
(或,以线段
为直径圆的方程为:![]()
令
得
![]()
∴当
时,
,圆
与
轴相切;
当
时,
,圆
与
轴相交; 9分
(3)方法一:假设平面内存在定点
满足条件,由抛物线对称性知点
在
轴上,设点
坐
科目:高中数学 来源: 题型:解答题
已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
+
=1(a>b>0),点P(
a,
a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我们把离心率为e=的双曲线
(a>0,b>0)称为黄金双曲线.如图,
是双曲线的实轴顶点,
是虚轴的顶点,
是左右焦点,
在双曲线上且过右焦点
,并且
轴,给出以下几个说法:![]()
①双曲线x2-
=1是黄金双曲线;
②若b2=ac,则该双曲线是黄金双曲线;
③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;
④如图,若∠MON=90°,则该双曲线是黄金双曲线.
其中正确的是( )
| A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
, M, N是直线x=4上的两个动点,且
·
=0.![]()
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为
和
,且|![]()
|=2,
点(1,
)在该椭圆上.
(1)求椭圆C的方程;
(2)过
的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设点P是圆x2+y2=4上任意一点,由点P向x轴作垂线PP0,垂足为P0,且
=![]()
.
(1)求点M的轨迹C的方程;
(2)设直线l:y=kx+m(m≠0)与(1)中的轨迹C交于不同的两点A,B.
若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4
.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足
+
=t
(O为坐标原点),当|
-
|<
时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知△OFQ的面积为S,且
·
=1.设|
|=c(c≥2),S=
c.若以O为中心,F为一个焦点的椭圆经过点Q,当|
|取最小值时,求椭圆的方程.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com