精英家教网 > 高中数学 > 题目详情


的前n项和,         

1009

解析,可得,则
所以
,所以
.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知当x=5时,二次函数f(x)=ax2+bx+c取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}的前n项和为Tn,且bn=
an
2n
,证明Tn≤-
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,Sn是数列{an}的前n项和.
(I)若a2=1,S5=20,求数列{an}的通项公式;
(II)设{bn}是等比数列,满足b1=a12,b2=a22,b3=a32,求数列{bn}公比q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最大的实数t,使cn
1
t
(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3(如在a1与a2之间插入30个3,a2与a3之间插入31个3,a3与a4之间插入32个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否为数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,Sn是数列{an}的前n项和,且对任意正整数n,Sn+1=4an+2.
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列{
1
log2cn+2log2cn+1
}的前n项和,求
lim
n→∞
Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

16、关于数列{an}有以下命题,其中错误的命题为(  )

查看答案和解析>>

同步练习册答案