【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数,
)以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,曲线
与
有且只有一个公共点.
(1)求实数
的值;
(2)已知点
的直角坐标为
,若曲线
与
:
(
为参数)相交于
,
两个不同点,求
的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,且椭圆过点
.
(1)求椭圆
的标准方程;
(2)设直线
与
交于
,
两点,点
在
上,
是坐标原点,若
,判断四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的序号是____________(写出所有正确命题的序号)
(1)“
为实数”是“
为有理数”的充分不必要条件;
(2)“
”是“
”的充要条件
(3)“
”是“
”的必要不充分条件;
(4)“
,
”是“
”的充分不必要条件;
(5)
的三个内角为
.“
”是“
”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为评估设备
生产某种零件的性能,从设备
生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:
![]()
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行判定(
表示相应事件的概率):
①
;
②
;
③
.
判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备
的性能等级.
(Ⅱ)将直径尺寸在
之外的零件认定为是“次品”.
①从设备
的生产流水线上随机抽取2个零件,求其中次品个数
的数学期望
;
②从样本中随意抽取2个零件,求其中次品个数
的数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
(
且
).
(I)求直线
的极坐标方程及曲线
的直角坐标方程;
(Ⅱ)已知
是直线
上的一点,
是曲线
上的一点,
,
,若
的最大值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P在直线l:y=x-1上,若存在过点P的直线交抛物线
于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正确的是( )
A.直线l上的所有点都是“正点”
B.直线l上仅有有限个点是“正点”
C.直线l上的所有点都不是“正点”
D.直线l上有无穷多个点(但不是所有的点)是“正点”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆
,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求点M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国内电商的不断发展,快递业也进入了高速发展时期,按照国务院的发展战略布局,以及国家邮政管理总局对快递业的宏观调控,SF快递收取快递费的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,在收费10元的基础上,每超过1kg(不足1kg,按1kg计算)需再收5元.某县SF分代办点将最近承揽的100件包裹的重量统计如下:
重量(单位:kg) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
件数 | 43 | 30 | 15 | 8 | 4 |
对近60天,每天揽件数量统计如下表:
件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
件数 | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 1 | 6 |
以上数据已做近似处理,将频率视为概率.
(1)计算该代办未来5天内不少于2天揽件数在101~300之间的概率;
(2)①估计该代办点对每件包裹收取的快递费的平均值;
②根据以往的经验,该代办点将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前该代办点前台有工作人员3人,每人每天揽件不超过150件,日工资110元.代办点正在考虑是否将前台工作人员裁减1人,试计算裁员前后代办点每日利润的数学期望,若你是决策者,是否裁减工作人员1人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com