【题目】已知直线
:
与直线
:
的距离为
,椭圆
:
的离心率为
.
(1)求椭圆
的标准方程;
(2)在(1)的条件下,抛物线
:
的焦点
与点
关于
轴上某点对称,且抛物线
与椭圆
在第四象限交于点
,过点
作抛物线
的切线,求该切线方程并求该直线与两坐标轴围成的三角形面积.
【答案】(1)
;(2)切线方程
,面积为
.
【解析】
(1)求出两平行直线间的距离,得到
,结合离心率求得
,再由隐含条件求得
则椭圆
的标准方程可求;(2)由抛物线
焦点,可得抛物线方程,联立抛物线方程与椭圆方程,求得
的坐标,写出抛物线
在
点处的切线为
,再与抛物线方程联立求得切线斜率,得到切线方程,分别求出切线在两坐标轴上的截距,代入三角形面积公式得答案.
(1)两平行直线间的距离
,∴
,
离心率
,故
,
,
∴椭圆
的标准方程为
;
(2)由题意,抛物线
焦点为
,故其方程为
.
联立方程组
,解得
或
(舍去),∴
.
设抛物线
在
点处的切线为
,
联立方程组
,整理得
,
由
,解之得
,
∴所求的切线方程为
.
即是
.
令
,得
;
令
,得
.
故所求三角形的面积为
.
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为R,并且图象关于y轴对称,当x≤-1时,y=f(x)的图象是经过点(-2,0)与(-1,1)的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.
(1)试求出函数f(x)的表达式,作出其图象;
(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
且
.
(1)若函数
是奇函数,试证明:对任意的
,恒有
;
(2)若对于
,函数
在区间
上的最大值是3,试求实数
的值;
(3)设
且
,问:是否存在实数
,使得对任意的
,都有
?如果存在,请求出
的取值范围;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且两个焦点的坐标分别为
,
.
(1)求
的方程;
(2)若
,
,
为
上的三个不同的点,
为坐标原点,且
,求证:四边形
的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在
中,
,D,E分别为
的中点,点F为线段
上的一点,将
沿
折起到
的位置,使
,如图2.
![]()
(1)求二面角![]()
(2)线段
上是否存在点
,使
平面
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.
![]()
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com