精英家教网 > 高中数学 > 题目详情
(2004•黄埔区一模)要把两种大小不同的钢板截成A、B二种规格的材料,每张钢板可同时截得两种规格较小的钢板数如图表:

规格类型
钢板类型
A规格 B规格
第一种钢板 2 1
第二种钢板 1 2
今需A、B两种规格材料分别为12及18张.试求:这两种钢板应各取多少张,才能既满足二种规格成品的需要又能使所用钢板总数最少?
分析:根据已知条件中设所需两种钢板张数分别为x,y(x,y为整数),则可做第一种为2x+y张,第二种为x+2y张,由题意得出约束条件,及目标函数,然后利用线性规划,求出最优解.
解答:解:设所需第一种钢板x张,第二种钢板y张?
依题意,得
2x+y≥12
x+2y≥18
x≥0
y≥0
x,y∈N

目标函数z=x+y.?
依图可得:当x=2,y=8时,z最小为10
即第一种钢板用2张,第二种钢板用8张符合要求.
点评:本题考察的知识点是简单的线性规划的应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•黄埔区一模)以椭圆
x2a2
+y2
=1(a>1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)已知,二次函数f(x)=ax2+bx+c及一次函数g(x)=-bx,其中a、b、c∈R,a>b>c,a+b+c=0.
(Ⅰ)求证:f(x)及g(x)两函数图象相交于相异两点;
(Ⅱ)设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求|A1B1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)设集合A={a,b},且A∪B={a,b,c},那么满足条件的集合B共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)已知
a
=(1,2),
b
=(x,1),当(
a
+2
b
)⊥(2
a
-
b
)时,实数x的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•黄埔区一模)给出四个命题:①若直线a∥平面α,直线b⊥α,则a⊥b;②若直线a∥平面α,a⊥平面β,则α⊥β;③若a∥b,且b?平面α,则a∥α;④若平面α⊥平面β,平面γ⊥β,则α⊥γ.其中不正确的命题个数是(  )

查看答案和解析>>

同步练习册答案