精英家教网 > 高中数学 > 题目详情
2.下列函数中,既是偶函数,又在(-∞,0)内单调递增的为(  )
A.y=x4+2xB.y=2|x|C.y=2x-2-xD.$y={log_{\frac{1}{2}}}|x|-1$

分析 根据函数的单调性和奇偶性判断即可.

解答 解:对于A,不是偶函数,不合题意;
对于B,x<0时,函数递减,不合题意;
对于C,函数是奇函数,在(-∞,0)内单调递减,不合题意,
对于D,函数是偶函数,x<0时,y=-log2(-x)-1,是增函数,符合题意,
故选:D.

点评 本题考查了函数的单调性、奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知复数z=(2+i)m2-$\frac{6m}{1-i}$-2(1-i),当实数m取什么值时,复数z是 
(1)虚数,
(2)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),sin($\frac{π}{2}$-2α)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式a>|x-5|-|x+1|对x∈R恒成立,则实数a的取值范围是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax(a∈R).
(1)若曲线y=f(x)存在一条切线与直线y=x平行,求a的取值范围;
(2)当0<a<2时,若f(x)在[a,2]上的最大值为-$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a=({1,λ}),\overrightarrow b=({2,1})$,若向量$2\overrightarrow a+\overrightarrow b$与$\overrightarrow c=({8,6})$共线,则$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(2x-1)ex,a=f(1),b=f(-$\sqrt{2}$),c=f(-ln2),d=f(-$\frac{1}{2}$),则(  )
A.a>b>c>dB.b>a>c>dC.d>a>b>cD.a>d>c>b

查看答案和解析>>

同步练习册答案