【题目】纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以
、
、
、
、
、
等标记来表示纸张的幅面规格.复印纸幅面规格只采用
系列和
系列,其中系列的幅面规格为:①
、
、
、
、
所有规格的纸张的幅宽(以
表示)和长度(以
表示)的比例关系都为
;②将
纸张沿长度方向对开成两等分,便成为
规格,
纸张沿长度方向对开成两等分,便成为
规格,…,如此对开至
规格.现有
、
、
、
、
纸各一张.若
纸的宽度为
,则
纸的面积为________
;这
张纸的面积之和等于________
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,A为C上异于原点的任意一点,过点A的直线交y轴正半轴于点B,且有
,当点A的纵坐标为6时,
为正三角形.
![]()
(1)求C的方程;
(2)若直线
,且
和C有且只有一个公共点D,证明:直线AD过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.
![]()
(1)证明:
平面
.
(2)若
,当三棱锥
的体积最大时,求
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(其中
为参数),以原点为极点,以
轴为极轴建立极坐标系,曲线
的极坐标方程为
(
为常数,且
),直线
与曲线
交于
两点.
(1)若
,求实数
的值;
(2)若点
的直角坐标为
,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C
上,过M作x轴的垂线,垂足为N,点P满足
.
(1)求点P的轨迹方程;
(2)设点
在直线
上,且
.证明:过点P且垂直于OQ的直线
过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2
,点F为AB的中点,点E为线段A1C1上的动点.
![]()
(1)求证:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面体A1B1EF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex﹣ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.
(1)求a的取值范围;
(2)证明:f′(
)<0(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记
t,求(a﹣1)(t﹣1)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com