精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
axx-1
,若2f(2)=f(3)+5.
(1)求a的值.
(2)利用单调性定义证明函数f(x)在区间(1,∞) 的单调性.(提示:用定义法证明)
分析:(1)代入利用2f(2)=f(3)+5,即可得出;
(2)判断:函数f(x)单调递减.利用定义证明:变形f(x)=
2x
x-1
=
2(x-1)+2
x-1
=2+
2
x-1
.?x2>x1>1,只有证明f(x2)-f(x1)<0即可.
解答:解:(1)∵2f(2)=f(3)+5,
2a
2-1
×2=
3a
3-1
+5
,解得a=2.
(2)判断:函数f(x)单调递减.
证明:由(1)可知:f(x)=
2x
x-1
=
2(x-1)+2
x-1
=2+
2
x-1

?x2>x1>1,则f(x2)-f(x1)=2+
2
x2-1
-(2+
2
x1-1
)
=
2(x1-x2)
(x2-1)(x1-1)

∵x2>x1>1,∴x1-x2<0,x2-1>0,x1-1>0.
∴f(x2)-f(x1)<0.即f(x2)<f(x1).
∴函数f(x)在区间(1,+∞) 的单调递减.
点评:本题考查了函数的单调性的定义、求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案