精英家教网 > 高中数学 > 题目详情

如图所示,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线CD交AE于点F,交AB于点D.

(1)求∠ADF的度数;
(2)若AB=AC,求AC∶BC.

(1) 45°   (2)

解析解:(1)∵AC为圆O的切线,
∴∠B=∠EAC,
又∵CD是∠ACB的平分线,
∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.
又∵BE为圆O的直径,∴∠DAE=90°,
∴∠ADF=(180°-∠DAE)=45°.
(2)∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
=.又∵AB=AC,∴∠B=∠ACB=30°,
∴在Rt△ABE中,  ="tan" B="tan" 30°=,
==.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,延长线上的一点,是圆的割线,过点的垂线,交直线于点,交直线于点,过点作圆的切线,切点为.

(1)求证:四点共圆;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,☉O和☉O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连结DB并延长交☉O于点E.证明:

(1)AC·BD=AD·AB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正△ABC中,点DE分别在边BCAC上,且BDBCCECAADBE相交于点P,求证:
 
(1)PDCE四点共圆;
(2)APCP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点DEF分别为弦AB与弦AC上的点,且BC·AEDC·AFBEFC四点共圆.
 
(1)证明:CA是△ABC外接圆的直径;
(2)若DBBEEA,求过BEFC四点的圆的面积与△ABC外接圆面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=,连接DE交BC于点F,AC=4,BC=3.求证:

(1)△ABC∽△EDC;
(2)DF=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,梯形ABCD内接于⊙OADBC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2DE·BC
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,求.

查看答案和解析>>

同步练习册答案