精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+1,g(x)=x,x∈R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N
(Ⅰ)求证:数列{bn+1}为等比数列;
(Ⅱ)令cn=
2n
anan+1
,Tn是数列{cn}的前n项和,求使Tn
2009
2010
成立的最小的n值.
分析:(Ⅰ)整理递推式2bn+1=bn+1得bn+1+1=2(bn+1),进而推断出数列{bn+1}是以1为首项,2为公比的等比数列.
(Ⅱ)根据(1)可求得数列}{bn}的通项公式,进而求得an,代入cn=
2n
anan+1
求得数列{cn}的通项公式,利用裂项法求得数列的前n项的和,结果1-
1
2n+1-1
进而根据Tn
2009
2010
求得n的范围,确定n的最小值.
解答:解:(Ⅰ)证明:由题意得2bn+1=bn+1
∴bn+1+1=2bn+2=2(bn+1),
又∵a1=2b1+1,
∴b1=0,b1+1=1≠0,
所以数列{bn+1}是以1为首项,2为公比的等比数列.
(Ⅱ)解:由(1)知,bn+1=2n-1
∴an=2bn+1=2n-1,
cn=
2n
anan+1
=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1

Tn=c1+c2+c3++cn=(1-
1
3
)+(
1
3
-
1
7
)++(
1
2n-1
-
1
2n+1-1
)
=1-
1
2n+1-1

Tn
2009
2010
,且n∈N*,解得满足条件的最小的n值为10.
点评:本题主要考查了等比关系的确定,数列的求和.数列的求和方法很多,如公式法,裂项法,错位相减法,平时应注意多积累.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案