精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数满足,且在[-3,-2]上单调递减,是锐角三角形的两内角,那么                     (                    )

A.          B.   

C.           D. 

【答案】C

【解析】因为,所以函数的周期为2,又在[-3,-2]上单调递减,所以在[-1,0]上单调递减,因为是偶函数,所以函数在[0,1]上单调递增。因为是锐角三角形的两内角,所以,所以,所以,因此选C。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=
4

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市同升湖实验学校高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京五中高三(上)第二次月考数学试卷(文科)(解析版) 题型:填空题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2011年高三数学(理科)一轮复习讲义:2.3 函数的奇偶性(解析版) 题型:解答题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2010年高考数学猜题精粹(文科)(解析版) 题型:解答题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

同步练习册答案