精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,M为棱AB的中点,则异面直线DM与D1B所成角的余弦值为( )
A.
B.
C.
D.
【答案】分析:取CD的中点为N,连接BN,根据题意并且结合正方体的结构特征可得DM∥BN,所以异面直线DM与D1B所成角等于直线BN与D1B所成角或者其补角,再利用解三角形的有关知识求出答案.
解答:解:取CD的中点为N,连接BN,

因为在正方体ABCD-A1B1C1D1中,M为棱AB的中点,
所以DM∥BN,
所以异面直线DM与D1B所成角等于直线BN与D1B所成角.
设正方体的棱长为2,所以D1N=,BN=,D1B=2
所以在△D1BN中,由余弦定理可得:cos∠D1BN=
故选B.
点评:本题主要考查了异面直线及其所成的角,解决此题题的关键是通过平移作出与异面直线所成角相等或者互补的角,再利用解三角形的有关求出角,此题也可以建立空间直角坐标系,利用向量之间的运算求出异面直线的夹角,此题考查空间想象能力、运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案