精英家教网 > 高中数学 > 题目详情
设函数,g(x)=2x+b,当时,f(x)取得极值.
(1)求a的值,并判断是函数f(x)的极大值还是极小值;
(2)当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求b的取值范围.
【答案】分析:(1)利用函数在极值点的导数等于0,求出a的值,再根据导数在极值点左侧、右侧的符号,判断是极大值还是极小值.
(2)设f(x)=g(x),则得 .设,G(x)=b,由F'(x)的符号判断
函数F(x)的单调性和单调区间,从而求出F(x)的值域,由题意得,函数F(x)与G(x)的图象有两个公共点,
从而得到b的取值范围.
解答:解:(1)由题意f'(x)=x2-2x+a,
∵当x=1+时,f(x)取得极值,
∴所以

∴即a=-1
此时当x<1+时,f'(x)<0,
当x>1+时,f'(x)>0,
是函数f(x)的最小值.
(2)设f(x)=g(x),则-3x-b=0,b=-3x,
设F(x)=-3x,G(x)=b,F'(x)=x2-2x-3,令F'(x)=x2-2x-3=0解得x=-1或x=3,
∴函数F(x)在(-3,-1)和(3,4)上是增函数,在(-1,3)上是减函数.
当x=-1时,F(x)有极大值F(-1)=;当x=3时,F(x)有极小值F(3)=-9,
∵函数f(x)与g(x)的图象有两个公共点,F(-3)=-9,F(4)=-
∴函数F(x)与G(x)的图象有两个公共点,结合图象可得
∴-或b=-9,

点评:本题考查函数在极值点的导数等于0,利用导数的符号判断函数的单调性及单调区间、极值,求函数在闭区间上的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3a2x+b(a,b∈R)在x=2处的切线方程为y=9x-14.
(1)求函数f(x)的解析式;
(2)令函数g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求实数k的取值范围;
②设函数y=g(x)的图象与直线x=2交于点P,试问:过点P是否可作曲线y=f(x)的三条切线?若可以,求出k的取值范围;若不可以,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知函数f(x)=ex-a(x-1),x∈R.
(1)若实数a>0,求函数f(x)在(0,+∞)上的极值;
(2)记函数g(x)=f(2x),设函数y=g(x)的图象C与y轴交于P点,曲线C在P点处的切线与两坐标轴所围成的图形的面积为S(a),求当a>1时S(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=g(x)为奇函数,f(x)=2+g(x)的最大值为M,最小值为m,则M+m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x-1),x∈R,其中a为实数.
(1)若实数a>0,求函数f(x)在(0,+∞)上的极值.
(2)记函数g(x)f(2x),设函数y=g(x)的图象C与y轴交于P点,曲线C在P点处的切线与两坐标轴所围成的图形的面积为S(a),当a>1时,求S(a)的最小值;
(3)当x∈(0,+∞)时,不等式f(x)+f′(x)+x3-2x2≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

同步练习册答案