精英家教网 > 高中数学 > 题目详情
(2010•重庆一模)已知向量
OA
=(mcosα,msinα)(m≠0),
OB
=(-sinβ,cosβ
)
.其中O为坐标原点.
(I)若α=β+
π
6
且m>0,求向量
OA
OB
的夹角;
(II)当实数α,β变化时,求实数|
OA
|-2|
OB
|
的最大值.
分析:(Ⅰ)设它们的夹角为θ,利用向量的数量积公式表示出cosθ,将已知条件 α=β+
π
6
代入,利用特殊角的三角函数值求出两个向量的夹角.
(II)先将|
OA
|-2|
OB
|
利用向量模的计算公式表示成
1+m2+2msin(β-α)
-2
,再利用三角函数的值域求出它的最大值即可.
解答:解:(I)设它们的夹角为θ,则:
cosθ=
OA
OB
|
OA
||
OB
|
=
m(-cosαsinβ+sinαcosβ)
m

=sin(α-β)=sin
π
6
=
1
2

θ=
π
3
…(6分)
(II)|
AB
|-2|
OB
|=
(-sinβ-mcosα)2+(cosβ-msinα)2
-2

=
1+m2+2msin(β-α)
-2
…(10分)
所以当m>0时,原式的最大值是m-1;
当m<0时,原式的最大值是-m-1…(12分)
点评:求向量的夹角问题,一般利用向量的数量积公式来解决;解决向量的模的最值问题,一般转化为函数的最值来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•重庆一模)已知x,y∈R,则“x•y=0”是“x=0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)抛物线y=2x2的交点坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设集合A={(x,y)|x2+y2≤1},集合B={(x,y)|log|x||y|≤log|y||x|,|x|<1,|y|<1},则在直角坐标平面内,A∩B所表示的平面区域的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案