【题目】已知函数
,
(其中
),其部分图像如图所示.
![]()
(1)求函数
的解析式;
(2)已知横坐标分别为
、
、
的三点
都在函数
的图像上,求
的值.
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为
(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线
、
相互垂直,与曲线C分别相交于A、B两点(不同于点O),且
的倾斜角为锐角
.
(1)求曲线C和射线
的极坐标方程;
(2)求△OAB的面积的最小值,并求此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的图象在
处取得极值4.
(1)求函数
的单调区间;
(2)对于函数
,若存在两个不等正数
,
,当
时,函数
的值域是
,则把区间
叫函数
的“正保值区间”.问函数
是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于
克该海产品的概率.
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入
(千元)与年收益增量
(千元)(
)的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线
的附近,且
,
,
,
,
,
,
,其中
,
=![]()
.根据所给的统计量,求
关于
的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量
,则
,
;
对于一组数据
,
,
,
,其回归线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
,点
,过
的直线
与圆
交于点
,过
做直线
平行
交
于点
.
(1)求点
的轨迹
的方程;
(2)过
的直线与
交于
、
两点,若线段
的中点为
,且
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题为“若
,则
”
B.命题“
,
”是假命题
C.若命题
、
均为假命题,则命题
为真命题
D.若
是定义在R上的函数,则“
”是“
是奇函数”的必要不允分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,以
的短轴为直径的圆与直线
相切.
(1)求
的方程;
(2)直线
交
于
,
两点,且
.已知
上存在点
,使得
是以
为顶角的等腰直角三角形,若
在直线
的右下方,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com