【题目】已知等比数列
中,
,
成等差数列;数列
中的前
项和为
,
.
(1)求数列
的通项公式;
(2)求数列
的前
项和.
【答案】(1)
,
;(2)
.
【解析】试题分析:(1)根据
,
成等差数列列出关于首项
,公比
的方程组,解得
、
的值,即可得到数列
的通项公式,当
时,
,(
也适合);(2)由(1)知
根据等比数列的求和公式和裂项相消求和以及分组即可求出数列
的前
项和.
试题解析:(1)设等比数列
的公比为
;
因为
成等差数列,故
,
即
,故
;
因为
,即
.
因为
,故当
时,
.
当
时,
;
综上所述
.
(2)由(1)知
; ![]()
故数列
的前
项和为
.
【方法点晴】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)
;(2)
; (3)
;(4)
;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍、2倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形
中,
为
中点.将
沿
翻折到
的位置,如图2.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)设
分别为
和
的中点,试比较三棱锥
和三棱锥
(图中未画出)的体积大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形
中,
,上底
,下底
,点
为下底
的中点,现将该梯形中的三角形
沿线段
折起,形成四棱锥
.
![]()
(1)在四棱锥
中,求证:
;
(2)若平面
与平面
所成二面角的平面角为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com