【题目】从某校高中男生中随机选取100名学生,将他们的体重(单位:
)数据绘制成频率分布直方图,如图所示.
![]()
(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在
,
,
三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在
内的概率.
【答案】(1)
(2)![]()
【解析】试题分析:(1)每个小矩形的中点横坐标与纵坐标的积之和就是该校的
名同学的平均体重;(2)记体重在
的
人为
,
,
,
的
人为
,
,
的1人为
,利用列举法求出总事件个数为
种,符合条件的事件个数为
,利用古典概型概率公式可得结果.
试题解析:(1)估计该校的100名同学的平均体重为:
.
(2)由频率分布直方图可知体重在
,
,
三组内的男生人数分别为
,
,
,
故这三组中通过分层抽样所抽取的人数分别为3,2,1.
记体重在
的3人为
,
,
,
的2人为
,
,
的1人为
,
则从这6人中抽取2人的所有可能结果为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15种,
其中体重在
至少有1人的结果有:
,
,
,
,
,
,
,
,
共9种,故这2人中至少有1人体重在
内的概率为
.
科目:高中数学 来源: 题型:
【题目】甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论;
(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数
的分布列和数学期望.
(注:方差
,其中
为
的平均数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于各项均为整数的数列
,如果满足
(
)为完全平方数,则称数列
具有“
性质”;不论数列
是否具有“
性质”,如果存在与
不是同一数列的
,且
同时满足下面两个条件:①
是
的一个排列;②数列
具有“
性质”,则称数列
具有“变换
性质”.
(Ⅰ)设数列
的前
项和
,证明数列
具有“
性质”;
(Ⅱ)试判断数列
和数列
是否具有“变换
性质”,具有此性质的数列请写出相应的数列
,不具此性质的说明理由;
(Ⅲ)对于有限项数列
,某人已经验证当
(
)时,数列
具有“变换
性质”,试证明:当
时,数列
也具有“变换
性质”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:
![]()
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量
其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂为预测产品的回收率
,需要研究它和原料有效成分含量
之间的相关关系,现收集了4组对照数据。
| 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 |
(Ⅰ)请根据相关系数
的大小判断回收率
与
之间是否存在高度线性相关关系;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并预测当
时回收率
的值.
参考数据: ![]()
| 1 | 0 |
|
| 其他 |
| 完全相关 | 不相关 | 高度相关 | 低度相关 | 中度相关 |
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,
上的动点
到两焦点的距离之和为4,当点
运动到椭圆
的上顶点时,直线
恰与以原点
为圆心,以椭圆
的离心率为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,若
交直线
于
两点.问以
为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是__________(填序号)
①命题“
,有
”的否定是“
”,有
”;
②已知
,
,
,则
的最小值为
;
③设
,命题“若
,则
”的否命题是真命题;
④已知
,
,若命题
为真命题,则
的取值范围是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.
![]()
(1)求
关于
的函数解析式;
(2)根据直方图估计利润
不少于
元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量
,则取
,且
的概率等于需求量落入
的频率),求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com