【题目】在数列
中,
,
,
(1)设
,证明:数列
是等差数列;
(2)求数列
的前
项和.
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)由
,可得
,化简得
,即可证明;(2)由(1)可得:
,
,再利用“错位相减法”、等比数列的前
项和公式即可得出.
试题解析:(1)证明 由已知an+1=2an+2n,
得
.
,又
.
∴{bn}是首项为1,公差为1的等差数列.
(2)解 由(1)知,bn=n,![]()
.∴an=n·2n-1.
∴Sn=1+2·21+3·22+…+n·2n-1
两边乘以2得:2Sn=1·21+2·22+…+(n-1)·2n-1+n·2n,
两式相减得:-Sn=1+21+22+…+2n-1-n·2n
=2n-1-n·2n=(1-n)2n-1,
∴Sn=(n-1)·2n+1.
科目:高中数学 来源: 题型:
【题目】如图1,在四棱锥
中,底面
是正方形,
.
(1)如图2,设点
为
的中点,点
为
的中点,求证:
平面
;
(2)已知网格纸上小正方形的边长为
,请你在网格纸上用粗线画图1中四棱锥
的府视图(不需要标字母),并说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.
![]()
(1)根据茎叶图判断哪个区域厂家的平均分较高;
(2)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获
(单位:
)与它的“相近”作物株数
之间的关系如下表所示:
| 1 | 2 | 3 | 4 |
| 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
![]()
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)在所种作物中堆积选取一株,求它的年收获量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:以点
(
)为圆心的圆与
轴交
于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线
与圆C交于点M, N,若OM = ON,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
,点
.
(1)设
是椭圆
上任意的一点,
是点
关于坐标原点的对称点,记
,求
的取值范围;
(2)已知点
,
,
是椭圆
上在第一象限内的点,记
为经过原点与点
的直线,
为
截直线
所得的线段长,试将
表示成直线
的斜率
的函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
表示
,
中的最大值,如![]()
.已知函数
,
.
(1)设
,求函数
在
上零点的个数;
(2)试探讨是否存在实数
,使得
对
恒成立?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com