精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.

(1)求椭圆 C 的方程;

(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.

【答案】(1);(2).

【解析】

(1)利用椭圆C:(a>b>0)的焦距为2,且过点(1,),建立方程组,求出a,b,即可求椭圆C的方程;

(2)分类讨论,求出直线PQ的方程,与椭圆方程联立,结合向量的数量积,在椭圆的内部,利用换元法,即可求的取值范围.

(1) 因为椭圆 的焦距为 ,且过点K ,所以,所以,于是 ,所以椭圆 的方程为

(2) 由题意,当直线 垂直于 轴时,直线 方程为 ,此时

当直线 不垂直于 轴时,设直线 的斜率为 由线段 的中点 的横坐标为 ,得 ,故 .此时,直线 斜率为 的直线方程为 ,即 联立 消去 ,整理得 ,所以

于是

由于 在椭圆的内部,故 ,令

.又 ,所以 .综上, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分组: ,…, ,得到的频率分布直方图如图所示.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(Ⅱ)求这名男生身高在以上(含)的人数;

(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有最大值 ,且 的导数.

)求的值;

)证明:当 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.

(Ⅰ)若两个球颜色不同,求不同取法的种数;

(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有A和B两个盒子装有大小相同的黄乒乓球和白乒乓球,A盒装有2个黄乒乓球,2个白乒乓球;B盒装有2个黄乒乓球,个白乒乓球. 现从A、B两盒中各任取2个乒乓球.

(1)若,求取到的4个乒乓球全是白的概率;

(2)若取到的4个乒乓球中恰有2个黄的概率为, 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只蚂蚁在边长分别为3,4,5的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y24x的焦点F,且与抛物线相交于AB两点.

1)若AF4,求点A的坐标;

2)求线段AB的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,.

(1)求函数的单调性;

(2)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案