精英家教网 > 高中数学 > 题目详情
已知P是椭圆
x2
25
+
y2
9
=1上的点,F1、F2分别是椭圆的左、右焦点,若
PF1
PF2
|
PF1
|•|
PF2
|
=
1
2
,则△F1PF2的面积为(  )
A、3
3
B、2
3
C、
3
D、
3
3
分析:先根据椭圆的方程求得c,进而求得|F1F2|,设F1P=m,F2P=n,再根据条件求出∠F1PF2=60°,然后利用余弦定理可求得mn的值,je 利用三角形面积公式求解.
解答:解:由题意可得:a=5,b=3,
所以c=4,即F1F2=2c=8.
设F1P=m,F2P=n,所以由椭圆的定义可得:m+n=10…①.
因为
PF1
PF2
|
PF1
|•|
PF2
|
=
1
2
,所以由数量积的公式可得:cos<
PF1
PF2
>=
1
2

所以
PF1
PF2
>=
π
3

在△F1PF2中∠F1PF2=60°,
所以由余弦定理可得:64=m2+n2-2mncos60°…②,
由①②可得:mn=12,所以S△F1PF2=
1
2
mnsin60°=3
3

故选A.
点评:解决此类问题的关键是熟练掌握椭圆的标准方程、椭圆的定义,熟练利用数量积求向量的夹角以及利用解三角形的知识求解面积问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是椭圆
x2
25
+
y2
9
=1
上的一点,O是坐标原点,F是椭圆的左焦点且
OQ
=
1
2
OP
+
OF
),|
OQ
|=4,则点P到该椭圆左准线的距离为(  )
A、6
B、4
C、3
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
25
+
y2
9
=1
上一点,焦点为F1、F2,∠F1PF2=
π
2
,则点P的纵坐标是
±
9
4
±
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
25
+
y2
9
=1
上的点,Q、R分别是圆(x+4)2+y2=
1
4
和圆(x-4)2+y2=
1
4
上的点,则|PQ|+|PR|的最小值是
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
25
+
y2
16
=1
上一点,F1、F2是焦点,∠F1PF2=90°,则△F1PF2的面积(  )

查看答案和解析>>

同步练习册答案