本小题满分12分)如图,在四棱锥
中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线![]()
;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
科目:高中数学 来源: 题型:
(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的
倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)如图,四边形
是边长为
的正方形,
、
分别是边
、
上的点(M不与A、D重合),且
,
交
于点
,沿
将正方形折成直二面角![]()
(1)当
平行移动时,
的大小是否发生变化?试说明理由;
(2)当
在怎样的位置时,
、
两点间的距离最小?并求出这个最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题
(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B—FC—D的大小。
![]()
查看答案和解析>>
科目:高中数学 来源:2010年河南省辉县市高一上学期第二次阶段性考试数学卷 题型:解答题
(本小题满分12分)
如图,ABCD是正方形,O是正方形的中心,PO
底面ABCD,E是PC的中点.
![]()
求证:(1)PA∥平面BDE;
(2)平面PAC
平面BDE.
查看答案和解析>>
科目:高中数学 来源:2010年河南省辉县市高一上学期第二次阶段性考试数学卷 题型:解答题
(本小题满分12分)
如图,在棱长为1的正方体ABCD-A1B1C1D1中.
![]()
(1)求证:AC⊥平面B1BDD1;
(2)求三棱锥B-ACB1体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com